## Very Fast Division

Given two positive integers $A$ and $B$, compute the unique $Q$ and $R$ such that $A=Q^{*} B+R$ and 0 $<=R<B$. That is, compute the quotient, $Q$, and the remainder, $R$, of $A$ divided by $B$.

## Input

The first line contains a single integer $\mathrm{T}(1<=\mathrm{T}<=10)$, indicating the number of test cases. Each test case contains a single line with $A$ and $B$ separated by a space. $A$ and $B$ will be positive integers with no more than 100,000 decimal digits with no leading zeroes.

## Output

For each test case output a single line containing $Q$ and $R$ separated by a space.

## Example

Input:
3
12810
4320321
123456789009876543211234567890098765432198765432100123456789

## Output:

128
13147
1249999988707812500182208718896223572532
Note: Submissions that are little more than using your language's built in big integer library are subject to disqualification without notice.

