Drawing Polygrams

Drawing stars on the last page of a notebook is a very entertaining hobby. Did you know these cute "stars" are actually called polygrams?

Given a regular polygon with \mathbf{p} vertices, we define a polygram \mathbf{p} / \mathbf{q}, as the resultant polygon obtained after connecting every i -th vertex with the $(\mathrm{i}+\mathrm{q})$-th vertex.

You may know the polygram $5 / 2$ as pentagram
Another example is the hexagram $6 / 2$. Given that 6 and 2 are not coprime, this polygram is composed by two $3 / 1$ polygrams
star polygons
$(5,2)$

$(7,2)$

$(8,2)$

$(9,2)$

(8,3)
$(9,3)$

$(10,3)$

Given a regular polygon with p vertices, its radius R (the distance from its center to any vertex) and a number q, can you calculate the area of the polygram p / q ?

It is guaranteed that the resultant polygon will not be degenerated, i.e $q \neq p / 2$ and $q \neq p$

Input

The first and only line of the input contains three integers \mathbf{p}, \mathbf{q} and \mathbf{r}

Output

Print in a single line the area of the resultant polygram p/q with radius r. Print the answer with exactly five decimal places

Example

Input:

542

Output:

9.51057

Input:
1045

Output:

40.61496

Constraints

$3 \leq p \leq 10^{3}$
$1 \leq q<p$
$1 \leq r \leq 100$
$q \neq p / 2$ and $q \neq p$

