Drawing Polygrams

Drawing stars on the last page of a notebook is a very entertaining hobby. Did you know these cute "stars" are actually called polygrams?

Given a regular polygon with \mathbf{p} vertices, we define a *polygram* \mathbf{p}/\mathbf{q} , as the resultant polygon obtained after connecting every i-th vertex with the (i+q)-th vertex.

You may know the polygram 5/2 as pentagram

Another example is the *hexagram* 6/2. Given that 6 and 2 are not coprime, this polygram is composed by two 3/1 polygrams

star polygons

Given a regular polygon with p vertices, its radius R (the distance from its center to any vertex) and a number q, can you calculate the area of the polygram p/q?

It is guaranteed that the resultant polygon will not be degenerated, i.e $q \neq p/2$ and $q \neq p$

Input

The first and only line of the input contains three integers \mathbf{p} , \mathbf{q} and \mathbf{r}

Output

Print in a single line the area of the resultant polygram p/q with radius r. Print the answer with exactly five decimal places

Example

Input:

542

Output:

9.51057

Input:

10 4 5

Output:

40.61496

Constraints

 $3 \le p \le 10^3$ $1 \le q < p$ $1 \le r \le 100$ $q \ne p/2$ and $q \ne p$