FREE PATHS

Problem Statement:

Consider a block of m rows and n columns. At each step you can move
one step to the right or one step to bottom or one step to bottom-right.
i.e. if you are currently at $(x, y) \quad: x$-row, y-column
u can either move to $(x, y+1)$ or $(x+1, y)$ or $(x+1, y+1)$

You've to find the number of possibilities to reach the point (A, B) from $(0,0)$.

Unluckily you cannot step into some places where bombs are placed denoted by "@".

Input:

The first line consists of 2 integers m and n denotes the number of rows and columns.
Then the description of the $m \times n$ block is given.
('0'- if the path is free to move and '@'-if the path has bombs and u cannot move to that place)
Then an integer t follows which denotes the number of test cases.
Then for next t lines each line consists of 2 integers A and B.

Output:

For each test case print the number of possibilities of reaching (A, B) from $(0,0)$ in separate lines.

Input Constraints:

$2<=m<=10$
$2<=n<=10$
$m>A>=0$
$n>B>=0$

EXAMPLE:

SAMPLE INPUT:

36
000@@@
@@00@@
@@000@
8
01
04
13
23
24
12
22
25

EXPLANATION OF THE TESTCASE:

From the figure clearly u can see that there are 3 paths to $(1,3), 7$ paths to $(2,3), 10$ paths to $(2,4)$ and so..

Note: if u can't see the image clearly goto the following link:
https://docs.google.com/uc?id=0BOrk3iRD6D_JYjAxMzAxNTEtYjU3YS00OWVhLWEyNzgtOWUzN2NmMmRmZDJh\&export=download\&authkey=CK-7vYol\&hl=en_US

