Maximum K in a Window

Note: The time limit is strict, so that only algorithms with complexity $\mathrm{O}(\mathrm{NM})$ will pass.
You are given an array of N positive integers.
We define the score of a continuous subarray of length K as the sum of its top M elements.
Your task is to find the L-th minimum score.

Input

In the first line, there are 4 positive integers, N K M L.
N lines follow. The i -th of them contain the i-th element of the array. It holds that:

- $1 \leq \mathrm{N} \leq 10^{6}$
- $1 \leq \mathrm{K} \leq \mathrm{N}$
- $1 \leq \mathrm{M} \leq 5$
- $1 \leq \mathrm{L} \leq \mathrm{N}-\mathrm{K}+1$
- all elements are at most 2^{60}

Output

The L-th minimum score.

Example

Input
6322
7

4
3
9
2
8

Output

12

Explanation

There are 4 different subarrays:
[743] with score $7+4=11$.
[4 3 3 9] with score $4+9=13$.
[3 92 2] with score $3+9=12$.
[9 28 8] with score $9+8=17$.
The second minimum is 12 .

