Wonowon

There is a little village in northern Canada called Wonowon, its name coming from the fact that it is located at Mile 101 of the Alaska Highway. While passing through this village, a wandering mathematician had an idea for a new type of number, which he called a wonowon number. He defined a wonowon number as a number whose decimal digits start and end with 1 , and alternate between 0 and 1 . Thus, the first four wonowon numbers are 101, 10101, 1010101, 101010101.

Neither 2 nor 5 can divide any wonowon number, but it is conjectured that every other prime number divides some wonowon number. For example, 3 divides 10101 (i.e. 3×3367), 7 divides 10101 (i.e. 7×1443), 11 divides 101010101010101010101 (i.e. $11 \times 9182736455463728191$).

Assume throughout that this conjecture is true, and let $\mathrm{W}(\mathrm{p})$ denote the number of digits in the smallest wonowon number divisible by p. Thus, for example, $W(3)=5, W(7)=5, W(11)=21$, $W(13)=5, W(17)=15, W(19)=17$.

It has been found experimentally that for many primes $\mathrm{p}, \mathrm{W}(\mathrm{p})=\mathrm{p}-2$ (as in the case for $\mathrm{p}=7,17$, 19). Thus, your task is to write a program which reads an integer n and outputs the number of primes for which $\mathrm{W}(\mathrm{p})=\mathrm{p}-2$. Note that p cannot be 2 nor 5 , and p is a prime number less-than or equal to n.

Input

The input consists of a single integer $3 \leq n \leq 10000$.

Output

The output should consist of a single integer representing the number of primes p for which $W(p)$ $=p-2$.

Example One

Input:
20
Output:
3

Example Two

Input:
100
Output:
14

