XYZ-Strings

Coach Pang likes strings. He is also interested in algorithms. A few days ago he discovered for himself a very nice problem:
You are given an $X Y$-string S. You need to count the number of substrings of S, which have an equal number of ' X '-s and ' Y '-s.
Do you know how to solve it? Good. Coach Pang will make the problem a little bit more difficult for you.

You are given an $X Y Z$-string S. You need to count the number of substrings of S, which have an equal number of 'X'-s, 'Y'-s and 'Z'-s.

A string is called $X Y$-string if it doesn't contain any symbols except ' X ' or ' Y '. A string is called $X Y Z$-string if it doesn't contain any symbols except ' X ', ' Y ' or ' Z '.
A bit more difficulty is added to the Question characters ' X ' ,' Y ' and ' Z ' will change for each test case.

Input:

The first line of the input contains T (number of test cases). For each test case there will be two lines.First contains a string of length three ("XYZ") (only upper case letters) representing ' X ' , 'y' and 'Z' respectively.Second line contains the XYZ-String S.

Output:

For each test case your output should contain the only integer, denoting the number of substrings of S, which have an equal number of ' X '-s, 'Y'-s and 'Z'-s.

Constraints

$1 \leq \mathrm{T} \leq 6$
$1 \leq|S| \leq 1000000$; where \mid S \mid denotes the length of the given XYZ-string.
Sum of all the strings S in the test file will not exceed 5000000.

Example

Input:

2
XYZ
$X Y Z X Y Z$

ABC
ABACABA

Output:

5
2

Explanation :

In the first example you should count $\mathrm{S}[1 . .3]=$ " XYZ ", $\mathrm{S}[2 . .4]=$ " YZX ", $\mathrm{S}[3 . .5]=$ "ZXY", $\mathrm{S}[4 . .6]=$ "XYZ" and S[1..6] = "XYZXYZ".
Similarly in the second example you should count $S[2 . .4]=$ "BAC" and $S[4 . .6]=$ "CAB".

