Yet Another Subset Sum Problem

Let \mathbf{Y} be an array of integers of size \mathbf{N}.
Let $\mathbf{G}(\mathbf{x})$ be a set comprising of the size of all the subsets of the array Y whose sum is \mathbf{X}.
Let $\mathbf{F}(\mathbf{G}(\mathbf{x})$) denote the number of unique elements in the set $\mathbf{G}(\mathbf{x})$.

Your task is to find the maximum value of $F(G(x))$ and the corresponding value x for the given array Y. In Case, many ' x ' correspond to maximum $\mathrm{F}(\mathrm{G}(\mathrm{x})$), print the smallest one.

Input

The first line describes the number of test cases T .
The input contains several test cases, each one described in exactly two lines.
The first line contains an integer N indicating the number of elements in the array.
The second line contains N integers separated by single spaces, representing the elements of the array.

Output

For every test case, print two integers: maximum $F(G(x))$ and the minimum value of x corresponding to it.

Constraints

T<=50
$1<=\mathrm{N}<=50$
$1<=Y[i]<=1000$

Example

Input:
2
4
1234
6
323453

Output:

23
25

Explanation

For test Case 1,
$G(1):\{1\}$ and $F(G(1)): 1$.
$G(2):\{1\}$ and $F(G(2)): 1$.
$G(3):\{1,2\}$ and $F(G(3)): 2$.
$G(4):\{1,2\}$ and $F(G(4)): 2$.
$G(5):\{2,2\}$ and $F(G(5)): 1$.
$G(6):\{2,3\}$ and $F(G(6)): 2$.
$G(7):\{2,3\}$ and $F(G(7)): 2$.
$G(8):\{3\}$ and $F(G(8)): 1$.
$G(9):\{3\}$ and $F(G(9)): 1$.
$G(10):\{4\}$ and $F(G(10)): 1$.

