Cubic Eight-Puzzle

Let's play a puzzle using eight cubes placed on a 3×3 board leaving one empty square.
Faces of cubes are painted with three colors. As a puzzle step, you can roll one of the cubes to the adjacent empty square. Your goal is to make the specified color pattern visible from above by a number of such steps.

The rules of this puzzle are as follows.

1. Coloring of Cubes: All the cubes are colored in the same way as shown in Figure 3. The opposite faces have the same color.

Figure 3: Coloring of a cube
2. Initial Board State: Eight cubes are placed on the 3×3 board leaving one empty square. All the cubes have the same orientation as shown in Figure 4. As shown in the figure, squares on the board are given x and y coordinates, (1, 1), (1, 2), \ldots, and (3, 3). The position of the initially empty square may vary.

Figure 4: Initial board state
3. Rolling Cubes: At each step, we can choose one of the cubes adjacent to the empty square and roll it into the empty square, leaving the original position empty. Figure 5 shows an example.

Before

Figure 5: Rolling a cube
4. Goal: The goal of this puzzle is to arrange the cubes so that their top faces form the specified color pattern by a number of cube rolling steps described above.

Your task is to write a program that finds the minimum number of steps required to make the specified color pattern from the given initial state.

Input

The input is a sequence of datasets. The end of the input is indicated by a line containing two zeros separated by a space. The number of datasets is less than 16. Each dataset is formatted as follows.

$$
\begin{array}{ll}
x & y \\
F_{11} & F_{21} \\
F_{31} \\
F_{12} & F_{22} F_{32} \\
F_{13} & F_{23} F_{33}
\end{array}
$$

The first line contains two integers x and y separated by a space, indicating the position (x, y) of the initially empty square. The values of x and y are 1,2 , or 3 .

The following three lines specify the color pattern to make. Each line contains three characters
$F_{1 \mathrm{j}}, F_{2 \mathrm{j}}$, and $F_{3 \mathrm{j}}$, separated by a space. Character F_{ij} indicates the top color of the cube, if any, at position (i, j) as follows:

B: Blue,
w: White,
R: Red,
E : the square is Empty.
There is exactly one ' E ' character in each dataset.

Output

For each dataset, output the minimum number of steps to achieve the goal, when the goal can be reached within 30 steps. Otherwise, output " -1 " for the dataset.

Example

Input:
12
w w w
E W W
W W W
21
RBW
RWW
E W W
33
WB W
BRE
RBR
33
B W R
B WR
BER
21
B B B
BRB
BRE
11
R R R
WWW
RRE
21
R R R
B W B
RRE
32
R R R
WEW
RRR
00

Output:

