Zeros of the fundamental Fibonacci period

Perhaps the first thing one notices when the Fibonacci sequence is reduced mod p is that it seems periodic.

For example :
$F(\bmod 2)=\underline{0} 1101101 \ldots$
$F(\bmod 3)=\underline{0} 112 \underline{0} 2210112 \ldots$
$F(\bmod 5)=\underline{0} 1123 \underline{0} 3 \mathbf{3 1 4 0 4 4 3 2 \underline { 0 } 2 2 4 1 0 1 1 2 3 \ldots .}$
We define $Z(p)$ the number of zeros in fundamental period of Fibonacci numbers $\bmod p$ (if it is periodic).
We just saw that $Z(2)=1, Z(3)=2$, and $Z(5)=4$.

Input

The first line contains T, the number of test cases.
Each of the next T lines contains a prime number p.

Output

For each test case, print $Z(p)$, or "Not periodic." without quotes if need.

Example

Input:
3
2
3
5

Output:
1
2
4

Constraints

You have four input files. The first two ones are those of $\underline{Z 124}$, the two others have higher constraints.
$1<\mathrm{T}<10^{\wedge} 4$
$1<\mathrm{p}<10^{\wedge} 100$, a prime number
Time limit is 2 times my unoptimized PY3.4 code time.
Good luck, and have fun ;-)

