What is the next number in the sequence

Given a sequence of integers $\left[s_{1} \ldots s_{n}\right.$] the first difference of this sequence d_{1} is $\left[s_{2}-s_{1}, s_{3}-s_{2}, s_{4}-s_{3}\right.$...]. Subsequent differences can be derived from the first difference, so if we number the elements in the first difference [$\left.d_{11} d_{12} d_{13} d_{14} \ldots\right]$ the second difference d_{2} is $\left[d_{12}-d_{11}, d_{13}-d_{12}, d_{14}-d_{13} \ldots\right]$.

For some sequences, the nth difference is zero.
The triangular numbers can be thought of in this way -
$s=\left[\begin{array}{lll}1 & 3 & 1015\end{array}\right.$...]
$d_{1}=\left[\begin{array}{llll}2 & 3 & 4 & 5\end{array} . ..\right]$
$d_{2}=\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array} \ldots\right]$
$d_{3}=\left[\begin{array}{lllll}0 & 0 & 0 & 0 & \ldots\end{array}\right]$
Given such a sequence, calculate the next three elements in the sequence.

Input

A single line of text featuring $M(M<10)$ space separated integers

Output

A single line of text featuring 3 space separated integers

Example

Input:

15325790131180

Output:

237302375

