Connect the Cows-USACO 2012 Mar, Bronze

Every day, Farmer John walks around his farm to check on the health and well-being of his $\mathrm{N}(1<=\mathrm{N}<=10)$ cows.

The location of each cow is described by a point in the 2D plane, and Farmer John starts out at the origin $(0,0)$. To make his route more interesting, Farmer John decides that he will only walk in directions parallel to the coordinate axes -- that is, only north, south, east, or west. Furthermore, he only changes his direction of travel when he reaches the location of a cow (he may also opt to pass through the location of a cow without changing direction, if desired). When he changes his direction of travel, he may make either a 90degree or 180-degree turn. FJ's route must take him back to the origin after visiting all his cows.

Please compute the number of different routes FJ can take to visit his N cows, if he changes direction exactly once at the location of each cow. He is allowed to pass through the location of a cow without changing direction an arbitrary number of times. The same geometric route taken forward versus backward counts as two different routes.

Input

* Line 1: The integer N .
* Lines $2 . .1+\mathrm{N}$: Line $\mathrm{i}+1$ contains the x and y coordinates (space-separated) of the ith point (each values is in the range -1000...1000).

Output

* Line 1: The number of different routes FJ can take (this could be
zero if there are no valid routes).

Example

Input:

4
01
21
20
2-5

Output:
2
There are 4 cows, at positions $(0,1),(2,1),(2,0)$, and $(2,-5)$.
There are two different routes: Farmer John can visit cows in the orders 1-2-
$4-3$ or 3-4-2-1 before returning to the origin.

