Discrete Roots

In this problem, we try to compute discrete $\mathrm{k}^{\text {th }}$ root modulo n ; given n, k, a; find all the solutions for x such that $x^{k}=a(\bmod n)$ and x is coprime with n.

Input

For each input file, there are 3 space seperated integers n, k, a.
$\mathrm{n}=\mathrm{p}^{\mathrm{e}}$ for some odd prime p , integer $\mathrm{e}>0 ; 0<=\mathrm{a}<\mathrm{n}<=10^{9}, 0<=\mathrm{k}<$ phi(n$)$, where phi is Euler's totient function; the numbers n, a are coprimes.

Output

The first line of the output contains a single integer m, the number of solutions in the range $[0, n-$ 1] that are coprimes with n, followed by m lines that contain the m solutions in ascending order. It is guranteed that $\mathrm{m}<=10^{4}$.

Example

Input:
513
Output:
1
3

