Cow Cars

$\mathrm{N}(1<=\mathrm{N}<=50,000)$ cows conveniently numbered $1 . . \mathrm{N}$ are driving in separate cars along a highway in Cowtopia. Cow i can drive in any of M different high lanes ($1<=\mathrm{M}<=\mathrm{N}$) and can travel at a maximum speed of S_i $(1<=$ S_i $<=1,000,000) \mathrm{km} / \mathrm{hour}$.

After their other bad driving experience, the cows hate collisions and take extraordinary measures to avoid them. On this highway, cow i reduces its speed by $D(0<=D<=5,000)$ $\mathrm{km} /$ hour for each cow in front of it on the highway (though never below $0 \mathrm{~km} / \mathrm{hour}$). Thus, if there are K cows in front of cow i, the cow will travel at a speed of max[S_i - D * K, 0]. While a cow might actually travel faster than a cow directly in front of it, the cows are spaced far enough apart so crashes will not occur once cows slow down as described,

Cowtopia has a minimum speed law which requires everyone on the highway to travel at a a minimum speed of $L(1<=L<=1,000,000) \mathrm{km} / \mathrm{hour}$ so sometimes some of the cows will be unable to take the highway if they follow the rules above. Write a program that will find the maximum number of cows that can drive on the highway while obeying the minimum speed limit law.

Input

- Line 1: Four space-separated integers: N, M, D, and L
- Lines 2..N+1: Line $\mathrm{i}+1$ describes cow i's initial speed with a single integer: S_i

Output

- Line 1: A single integer representing the maximum number of cows that can use the highway

Example

Input:

3115
5
7
5
There are three cows with one lane to drive on, a speed decrease of 1 , and a minimum speed limit of 5 .

Output:

2

Two cows are possible, by putting either cow with speed 5 first and the cow with speed 7 second.

