Pasture Walking

Neal Wu, 2007
Points: 200
The N cows $(2<=\mathrm{N}<=1,000)$ conveniently numbered $1 . . \mathrm{N}$ are grazing among the N pastures also conveniently numbered 1 ..N. Most conveniently of all, cow i is grazing in pasture i .

Some pairs of pastures are connected by one of $\mathrm{N}-1$ bidirectional walkways that the cows can traverse. Walkway i connects pastures A_i and B_i ($1<=$ A_i $<=\mathrm{N} ; 1<=$ B_i $<=\mathrm{N})$ and has a length of $\mathrm{L}_{\mathrm{L}} \mathrm{i}\left(1<=\mathrm{L}_{\mathrm{i}} \mathrm{i}<=10,000\right)$.

The walkways are set up in such a way that between any two distinct pastures, there is exactly one path of walkways that travels between them. Thus, the walkways form a tree.

The cows are very social and wish to visit each other often. Ever in a hurry, they want you to help them schedule their visits by computing the lengths of the paths between $Q(1<=Q<=1,000)$ pairs of pastures (each pair given as a query p1,p2 ($1<=$ p1 <=N; $1<=$ p2 <=N).

Input

- Line 1: Two space-separated integers: N and Q
- Lines 2..N: Line $\mathrm{i}+1$ contains three space-separated integers: A_i, B_i, and L_i
- Lines N+1..N+Q: Each line contains two space-separated integers representing two distinct pastures between which the cows wish to travel: p1 and p2

Output

- Lines 1..Q: Line i contains the length of the path between the two pastures in query i .

Example

Input:

42
212
432
143
12
32
Output:
2
7

Output details

Query 1: The walkway between pastures 1 and 2 has length 2.
Query 2: Travel through the walkway between pastures 3 and 4, then the one between 4 and 1, and finally the one between 1 and 2, for a total length of 7 .

