Power Failure

Rob Kolstad, 2008
Points: 350

A vicious thunderstorm has destroyed some of the wires of the farm's electrical power grid! Farmer John has a map of all $\mathrm{N}(2<=\mathrm{N}<=1,000)$ of the powerpoles, which are conveniently numbered 1..N and located on integer plane coordinates x_i,y_i (-100,000 <=x_i <= 100000; $\left.100,000<=y _i<=100,000\right)$.

Some $\mathrm{W}(1<=\mathrm{W}<=10,000)$ power wires connect pairs of power poles Pi and $\mathrm{Pj}(1<=\mathrm{Pi}<=\mathrm{N} ; 1$ $<=\mathrm{Pj}<=\mathrm{N})$.

He needs to get power from pole 1 to pole N (which means that some series of wires can traverse from pole 1 to pole N , probably through some intermediate set of poles).

Given the locations of the N poles and the list of remaining power wires, determine the minimum length of power wire required to restore the electrical connection so that electricity can flow from pole 1 to pole N. No wire can be longer than some real number $\mathrm{M}(0.0<\mathrm{M}<=200,000.0)$.

As an example, below on the left is a map of the 9 poles and 3 wires after the storm. For this task, $\mathrm{M}=2.0$. The best set of wires to add would connect poles 4 and 6 and also poles 6 and 9 .

After the storm	Optimally reconnected
$3 . .79$	$3 \ldots 79$
	1
$2 . .56$	$2 . .56$
	1
1 2-3-4. 8	1 2-3-4.8
1	1
01	01
0123456789	0123456789

The total length is then $1.414213562+1.414213562=2.828427124$.

Input

- Line 1: Two space-separated integers: N and W
- Line 2: A single real number: M
- Lines 3..N+2: Each line contains two space-separated integers: x_i and y_i
- Lines N+3..N+2+W: Two space-separated integers: Pi and Pj

Output

- Line 1: A single integer on a single line. If restoring connection is impossible, output -1 . Otherwise, output a single integer that is 1000 times the total minimum cost to restore electricity. Do not perform any rounding; truncate the resulting product.

Example

Input:
93
2.0

00
01
11
21
22
32
33
41
43
12
23
34
Output:
2828

Input details

Just as in the diagram above.
Output details
As above.

