Watering Hole

Paul Christiano, 2007

Points: 400

Farmer John has decided to bring water to his $\mathrm{N}(1<=\mathrm{N}<=300)$ pastures which are conveniently numbered 1..N. He may bring water to a pasture either by building a well in that pasture or connecting the pasture via a pipe to another pasture which already has water.

Digging a well in pasture i costs W_i ($1<=$ W_i <= 100,000). Connecting pastures i and j with a pipe costs $P_{\text {_ij }}\left(1<=P_{-} \mathrm{ij}<=100,000 ; \mathrm{P}_{\mathrm{i}} \mathrm{ij}=\mathrm{P}\right.$ _i $\left.; \mathrm{P}_{-} \mathrm{i}=0\right)$.

Determine the minimum amount Farmer John will have to pay to water all of his pastures.

Input

- Line 1: A single integer: N
- Lines 2..N + 1: Line $\mathrm{i}+1$ contains a single integer: W_i
- Lines $N+2 . .2 N+1$: Line $N+1+i$ contains N space-separated integers; the j-th integer is P _ij

Output

- Line 1: A single line with a single integer that is the minimum cost of providing all the pastures with water.

Example

Input:

4
5
4
4
3
0222
2033
2304
2340
Output:
9

Input details

There are four pastures. It costs 5 to build a well in pasture 1, 4 in pastures 2 and 3,3 in pasture 4 . Pipes cost 2,3 , and 4 depending on which pastures they connect.

Output details

Farmer John may build a well in the fourth pasture and connect each pasture to the first, which costs $3+2+2+2=9$.

