Calculator

Once little Petya was learning positional numeral systems. Using such systems the numbers are represented as the sequence of digits

$$
a_{n} a_{n-1} \ldots a_{2} a_{1} a_{0}=\sum_{k=0}^{n} a_{k} b^{k}
$$

where b is the base of the numeral system, and $0<=a_{k}<b$. Petya was disappointed that one can represent only non-negative numbers this way. But then he found out that there are systems with negative base such as negabinary system in which $b=-2, a_{k} \in\{0,1\}$. One can represent any integer in this system for example 1110_2 $=-6$. Moving the idea further Petya came up with his own base b using which he could represent even more numbers given $a_{k} \in\{0,1\}$. However performing arithmetic operations in this non-standard system turned to be rather difficult. Help Petya implement a calculator for his numeral system.

Input

The first line of input is number T - the amount of test cases. Next T lines contain the description of arithmetic expression consisting of two operands and an operation separated with spaces. Both operands consist of one ' 0 ' and ' 1 ' digits and have the length of no more than 100. Operation is one of '+', ‘-' or '*’.

Constraints

$1<=T<=1000$

Output

For each test case output a number which is the result of evaluating the given expression.

Example

Input:

5
11-11
$1+1$
1100 * 1100
1101-11
111 * 1

Output:

0
1100
111010000
111010110
111

