Fermat vs Pythagoras

Background

Computer generated and assisted proofs and verification occupy a small niche in the realm of Computer Science. The first proof of the four-color problem was completed with the assistance of a computer program and current efforts in verification have succeeded in verifying the translation of high-level code down to the chip level.

This problem deals with computing quantities relating to part of Fermat's Last Theorem: that there are no integer solutions of

$$
a^{n}+b^{n}=c^{n}
$$

for $n>2$.

The Problem

Given a positive integer N , you are to write a program that computes two quantities regarding the solution of

$$
x^{2}+y^{2}=z^{2}
$$

where x, y, and z are constrained to be positive integers less than or equal to N . You are to compute the number of triples (x, y, z) such that $x<y<z$, and they are relatively prime, i.e., have $0<p \leq N$ no common divisor larger than 1 . You are also to compute the number of values such that p is not part of any triple (not just relatively prime triples).

The Input

The input consists of a sequence of positive integers, one per line. Each integer in the input file will be less than or equal to $1,000,000$. Input is terminated by end-of-file

The Output

For each integer N in the input file print two integers separated by a space. The first integer is the number of relatively prime triples (such that each component of the triple is $\leq N$). The second number is the number of positive integers $\leq N$ that are not part of any triple whose
components are all ${ }^{-}$. There should be one output line for each input line.

Sample Input

10
25
100

Sample Output

14
49
1627

