## EXFOR - Explicit Formula

no tags

Consider 10 Boolean variables x1, x2, x3, x4, x5, x6, x7, x8, x9, and x10. Consider all pairs and triplets of distinct variables among these ten. (There are 45 pairs and 120 triplets.) Count the number of pairs and triplets that contain at least one variable equal to 1. Set f(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) = 1 if this number is odd and f(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) = 0 if this number is even.

Here’s an explicit formula that represents the function f(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) correctly:

f(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) = (x1 || x2)^(x1 || x3)^(x1 || x4)^(x1 || x5)^(x1 || x6)^(x1 || x7)^(x1 || x8)^(x1 || x9)^(x1 || x10)^(x2 || x3)^(x2 || x4)^(x2 || x5)^(x2 || x6)^(x2 || x7)^(x2 || x8)^(x2 || x9)^(x2 || x10)^(x3 || x4)^(x3 || x5)^(x3 || x6)^(x3 || x7)^(x3 || x8)^(x3 || x9)^(x3 || x10)^(x4 || x5)^(x4 || x6)^(x4 || x7)^(x4 || x8)^(x4 || x9)^(x4 || x10)^(x5 || x6)^(x5 || x7)^(x5 || x8)^(x5 || x9)^(x5 || x10)^(x6 || x7)^(x6 || x8)^(x6 || x9)^(x6 || x10)^(x7 || x8)^(x7 || x9)^(x7 || x10)^(x8 || x9) ^ (x8 || x10) ^ (x9 || x10) ^ (x1 || x2 || x3) ^ (x1 || x2 || x4) ^ (x1 || x2 || x5) ^ (x1 || x2 || x6) ^(x1 || x2 || x7) ^ (x1 || x2 || x8) ^ (x1 || x2 || x9) ^ (x1 || x2 || x10) ^ (x1 || x3 || x4) ^ (x1 || x3 || x5) ^(x1 || x3 || x6) ^ (x1 || x3 || x7) ^ (x1 || x3 || x8) ^ (x1 || x3 || x9) ^ (x1 || x3 || x10) ^ (x1 || x4 || x5) ^(x1 || x4 || x6) ^ (x1 || x4 || x7) ^ (x1 || x4 || x8) ^ (x1 || x4 || x9) ^ (x1 || x4 || x10) ^ (x1 || x5 || x6) ^(x1 || x5 || x7) ^ (x1 || x5 || x8) ^ (x1 || x5 || x9) ^ (x1 || x5 || x10) ^ (x1 || x6 || x7) ^ (x1 || x6 || x8) ^(x1 || x6 || x9) ^ (x1 || x6 || x10) ^ (x1 || x7 || x8) ^ (x1 || x7 || x9) ^ (x1 || x7 || x10) ^ (x1 || x8 || x9) ^(x1 || x8 || x10) ^ (x1 || x9 || x10) ^ (x2 || x3 || x4) ^ (x2 || x3 || x5) ^ (x2 || x3 || x6) ^ (x2 || x3 || x7) ^(x2 || x3 || x8) ^ (x2 || x3 || x9) ^ (x2 || x3 || x10) ^ (x2 || x4 || x5) ^ (x2 || x4 || x6) ^ (x2 || x4 || x7) ^(x2 || x4 || x8) ^ (x2 || x4 || x9) ^ (x2 || x4 || x10) ^ (x2 || x5 || x6) ^ (x2 || x5 || x7) ^ (x2 || x5 || x8) ^(x2 || x5 || x9) ^ (x2 || x5 || x10) ^ (x2 || x6 || x7) ^ (x2 || x6 || x8) ^ (x2 || x6 || x9) ^ (x2 || x6 || x10) ^(x2 || x7 || x8) ^ (x2 || x7 || x9) ^ (x2 || x7 || x10) ^ (x2 || x8 || x9) ^ (x2 || x8 || x10) ^ (x2 || x9 || x10) ^(x3 || x4 || x5) ^ (x3 || x4 || x6) ^ (x3 || x4 || x7) ^ (x3 || x4 || x8) ^ (x3 || x4 || x9) ^ (x3 || x4 || x10) ^(x3 || x5 || x6) ^ (x3 || x5 || x7) ^ (x3 || x5 || x8) ^ (x3 || x5 || x9) ^ (x3 || x5 || x10) ^ (x3 || x6 || x7) ^(x3 || x6 || x8) ^ (x3 || x6 || x9) ^ (x3 || x6 || x10) ^ (x3 || x7 || x8) ^ (x3 || x7 || x9) ^ (x3 || x7 || x10) ^(x3 || x8 || x9) ^ (x3 || x8 || x10) ^ (x3 || x9 || x10) ^ (x4 || x5 || x6) ^ (x4 || x5 || x7) ^ (x4 || x5 || x8) ^(x4 || x5 || x9) ^ (x4 || x5 || x10) ^ (x4 || x6 || x7) ^ (x4 || x6 || x8) ^ (x4 || x6 || x9) ^ (x4 || x6 || x10) ^(x4 || x7 || x8) ^ (x4 || x7 || x9) ^ (x4 || x7 || x10) ^ (x4 || x8 || x9) ^ (x4 || x8 || x10) ^ (x4 || x9 || x10) ^(x5 || x6 || x7) ^ (x5 || x6 || x8) ^ (x5 || x6 || x9) ^ (x5 || x6 || x10) ^ (x5 || x7 || x8) ^ (x5 || x7 || x9) ^(x5 || x7 || x10) ^ (x5 || x8 || x9) ^ (x5 || x8 || x10) ^ (x5 || x9 || x10) ^ (x6 || x7 || x8) ^ (x6 || x7 || x9) ^(x6 || x7 || x10) ^ (x6 || x8 || x9) ^ (x6 || x8 || x10) ^ (x6 || x9 || x10) ^ (x7 || x8 || x9) ^ (x7 || x8 || x10) ^(x7 || x9 || x10) ^ (x8 || x9 || x10)

In this formula || stands for logical or, and ^ stands for exclusive or (xor). Remember that in C++ and Java these two binary operators are denoted as “||” and “^”.

Given the values of x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, calculate the value of f(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10).

### Input

The first line of the input file contains T, the number of test cases. The next T lines contain 10 numbers each, x1, x2, x3, x4, x5, x6, x7, x8, x9, and x10. Each of these numbers is either 0 or 1.

### Output

For each test case output a single line with the value f(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10).

### Example

`Input:`
```1
1 0 0 1 0 0 1 0 0 1

Output:
0
```