## JHNSN - Johnsons Algorithm

no tags

Johnson's algorithm solves the all-pairs shortest path problem in a weighted, directed graph.

### Input

```t [number of test graphs]

[description of each graph]
n [number of nodes, 1<=n<=100]
m [number of edges, m>=0]
[next the list of edges, one edge per line]
u v w [e(u,v) - edge from node u to node v with weight w]
[1<=u<=n, 1<=v<=n, -1000<=w<=1000]
...   [next edge]

[next graph]
...
```

### Output

If the i-th test graph has negative weight cycles, then the answer should be:

`graph i no [where 'i' is the number of the graph, 1<=i<=t]`

Otherwise you should output the following data:

```graph i yes

[vector of function h(v)]
h1 h2 ... hn+1

[matrix d[u,v], the solution of the all-pairs shortest path problem]
d1,1 d1,2 ... d1,n
d2,1 d2,2 ... d2,n
... ... ... ...
dn,1 dn,2 ... dn,n
[if the path doesn't exist, you should output # instead]```

### Example

```Input:
6

2
2
1 2 -2
2 1 1

6
8
1 2 8
1 6 6
6 2 3
2 3 -1
3 6 -2
6 5 -2
5 4 2
3 4 3

4
4
1 2 1
2 3 2
3 4 3
4 1 0

2
0

1
0

2
2
1 2 -1
2 1 0

Output:
graph 1 no

graph 2 yes

0 0 -1 -3 -5 -3 0

0 8 7 5 3 5
# 0 -1 -3 -5 -3
# 1 0 -2 -4 -2
# # # 0 # #
# # # 2 0 #
# 3 2 0 -2 0

graph 3 yes

0 0 0 0 0

0 1 3 6
5 0 2 5
3 4 0 3
0 1 3 0

graph 4 yes

0 0 0

0 #
# 0

graph 5 yes

0 0

0

graph 6 no

```

 Added by: Bartłomiej Kowalski Date: 2006-02-05 Time limit: 1.852s Source limit: 50000B Memory limit: 1536MB Cluster: Cube (Intel G860) Languages: All except: NODEJS PERL6 VB.NET Resource: http://www.sphere.pl/~deren/gms/03_najkrsc2.pdf