ID NAME QUALITY USERS ACC % DIFFICULTY C I
28451 Ada and Cities   3 47
17
17
30669 Ada and Trip   8 180
15
15
5151 Alice‚Äôs Cube   7 446
26
23
26445 Alicias Afternoon Amble   7 79
21
27
4555 Einbahnstrasse   445
23
9
372 The Benefactor   29 2196
13
12
4182 Candy (Again)   1 172
34
34
9126 Time to live   24 1212
11
15
3763 George   12 371
20
18
3381 Highways   42 2839
10
10
6256 Inversion Count   316 9921
15
18
4181 MELE3   14 525
20
21
1845 Mice and Maze   56 3608
10
9
16272 Nanoworld   1 31
17
17
215 Panic in the Plazas   77
2047 Stone Removing Game   -1 123
3405 Almost Shortest Path   48 1234
23
23
15 The Shortest Path   79 3973
19
14
26663 Theater shade in Berland   1 22
34
17
3643 Traffic Network   47 1416
19
21
1700 Traveling by Stagecoach   4 294
20
17
6294 Yodaness Level   48 2533
15
16

#shortest-path

In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.

https://en.wikipedia.org/wiki/Shortest_path_problem https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm