ID NAME QUALITY USERS ACC % DIFFICULTY C I
28451 Ada and Cities   3 50
17
17
30669 Ada and Trip   8 193
15
15
5151 Alice‚Äôs Cube   7 450
26
23
26445 Alicias Afternoon Amble   8 80
19
25
4555 Einbahnstrasse   446
23
9
372 The Benefactor   30 2215
13
12
4182 Candy (Again)   1 172
34
34
9126 Time to live   24 1239
11
15
3763 George   12 375
20
18
3381 Highways   43 2904
11
10
6256 Inversion Count   328 10131
15
18
4181 MELE3   14 527
20
21
1845 Mice and Maze   56 3681
10
9
16272 Nanoworld   1 31
17
17
215 Panic in the Plazas   77
2047 Stone Removing Game   -1 124
3405 Almost Shortest Path   49 1253
23
22
15 The Shortest Path   79 4058
19
13
26663 Theater shade in Berland   1 22
34
17
3643 Traffic Network   50 1448
19
21
1700 Traveling by Stagecoach   5 296
17
15
6294 Yodaness Level   48 2568
15
16

#shortest-path

In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.

https://en.wikipedia.org/wiki/Shortest_path_problem https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm