ID NAME QUALITY USERS ACC % DIFFICULTY C I
28451 Ada and Cities   3 45
17
17
30669 Ada and Trip   8 171
15
15
5151 Alice‚Äôs Cube   7 439
26
23
26445 Alicias Afternoon Amble   7 78
21
27
4555 Einbahnstrasse   444
23
9
372 The Benefactor   28 2151
13
12
4182 Candy (Again)   1 171
34
34
9126 Time to live   24 1184
11
15
3763 George   12 365
20
18
3381 Highways   41 2776
10
10
6256 Inversion Count   297 9673
15
18
4181 MELE3   13 519
20
21
1845 Mice and Maze   53 3512
9
9
16272 Nanoworld   1 30
17
17
215 Panic in the Plazas   77
2047 Stone Removing Game   -1 122
3405 Almost Shortest Path   48 1215
23
23
15 The Shortest Path   75 3863
19
13
26663 Theater shade in Berland   1 20
34
17
3643 Traffic Network   46 1373
18
21
1700 Traveling by Stagecoach   3 279
20
17
6294 Yodaness Level   47 2490
15
16

#shortest-path

In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.

https://en.wikipedia.org/wiki/Shortest_path_problem https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm